Creation year

2007

90 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
Resolution
From 1 - 10 / 90
  • ---- The bulletin collects SYNOP reports:FM 12 (SYNOP, Report of surface observation from a fixed land station).(Refer to WMO No.306 - Manual on Codes for the definition of WMO international codes)---- The SMPF01 TTAAii Data Designators decode (2) as:T1 (S): Surface data.T2 (M): Main synoptic hour.A1A2 (PF): French Polynesia Islands.(2: Refer to WMO No.386 - Manual on the GTS - Attachment II.5)---- The bulletin collects reports from stations:Atuona, Bora-bora, Tahiti-faaa, Takaroa, Hao, Hereheretue, Rikitea, Tubuai and Rapa

  • 72h forecast with MM5 V3.7 using - 60km x 60km resolution - 55 x 45 Grids - NOAA GFS input - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: -6.769222 yfirst: 34.404968 xsize: 55.0 ysize: 45.0 xinc: 0.2 yinc: 0.54 xnpole: 0.0 ynpole: 0.0

  • 72h forecast with MM5 V3.7, nested run using - mm5_15 run as input - 3.75km x 3.75km resolution - 57 x 49 Grids - Noah land-surface scheme - MRF PBL - Grell cumulus scheme - Graupel (Reisner2) explicit moisture scheme - Cloud for atmospheric radiation Grid description: DDOM: xfirst: 10.207822 yfirst: 46.897579 xsize: 66.0 ysize: 48.0 xinc: 0.0005 yinc: 0.035 xnpole: 0.0 ynpole: 0.0

  • The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) set is a completely satellite based climatology of precipitation, turbulent heat fluxes and freshwater budget (evaporation minus precipitation) as well as related athmospheric state variables over the global ice free oceans. All variables are derived from SSM/I passive microwave radiometers, except for the SST, which is taken from AVHRR measurements. The dataset includes multi-satellite averages, inter-sensor calibration, and an efficient sea ice detection procedure. Changes in this version are a longer time series, now containing data from 1987 to 2005, a new neural network based precipitation algorithm, and inclusion of the RSMAS/NODC Pathfinder Version 5 SST fields. Additionally a new 85 GHz synthesis procedure has been implemented, making a continuous time series for all parameters for the whole time series possible. This dataset contains 1 degree twice daily globally gridded multi-satellite composite products, providing high temporal resolution. Each grid-cell contains data from only one satellite pass, there is no average from two or more satellites. Early passes are overwritten by later passes. This method provides more spatial homogeneity than averaging all available data. The fields are stored for 0-12 and 12-24 UTC. Timesteps in the data files are at 0 UTC (0-12 UTC overpasses) and 12 UTC (12-24 UTC overpasses). Each grid-cell contains the average of data from the satellite that passed this gridbox closest to 12 and 24 UTC, respectively. Other gridded data sets available are pentad (5-day) and monthly means on a global 0.5 deg. x 0.5 deg. grid. For more information see http://www.hoaps.org/.

  • COSMO-SREPS (csreps) is a high-resolution ensemble system for the short-range (up to three days). The system consists of 16 integrations of the non-hydrostatic limited-area model COSMO. The model is run at about 10 km of horizontal resolution, with 40 levels in the vertical. The ensemble is generated by taking into account different sources of forecast errors, in order to describe the uncertainty affecting the scales of interest in the high-resolution weather forecast at the considered time range. Initial and boundary conditions perturbations are provided by some members of the Multi-Analysis Multi-Boundary SREPS system of INM: the 10-km COSMO runs of COSMO-SREPS are driven by the four lower resolution (25 km) COSMO runs provided by INM, nested on four different global models (IFS, GME, NCEP, UM) which use independent analyses. Each of the four 25-km COSMO run provides initial and boundary conditions (3-hourly) to four 10-km COSMO runs, which are differentiated by applying different model perturbations. Four parameters of the schemes used for the parameterisation of the sub-grid processes are randomly changed, within their range of variability, in the ensemble members. Grid description: DDOM: xfirst: -6.02 yfirst: -7.0 xsize: 135.0 ysize: 83.0 xinc: 0.09 yinc: 0.09 xnpole: 190.0 ynpole: 40.0

  • The experiment CLM_C20_2_D2 contains European regional climate simulations of the years 1960-2000 on a rotated grid (CLM non hydrostatic, 0.165 degree hor. resolution, see http://www.clm-community.eu ). The simulations of the 20th century (1960-2000) have been forced by the second (_2_) run of the global 20th century climate (EH5-T63L31_OM-GR1.5L40_20C_2_6H) with observed anthropogenic forcing. In data stream 2 (_D2) the output variables of CLM are stored as time series on a rotated grid. The model region starts at -20.8725/-23.7275 (lat/lon in rotated coordinates; centre of lower left grid box) with an increment of 0.165 degree. The position of the North Pole in the rotated grid is: 39.25/-162.0 (lat/lon). The number of grid points is 255/241 (lat/lon). The sponge zone (numerically unreliable boundary grid points) of the original model output has been cut off. The regional model variables include two-dimensional near surface fields, as well as soil and atmospheric fields on different layers. The soil fields are simulated on 10 different levels with a maximum depth of 15 meters. The atmospheric fields are given on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa). The time interval of the output fields ranges from 1 to 3 hours and includes daily output fields, depending on the respective variables. Please contact sga"at"dkrz.de for data request details. See http://sga.wdc-climate.de for more details on CLM simulations in the context of the BMBF funding priority "klimazwei", some useful information on handling climate model data and the data access regulations. The output format is netCDF Experiment with CLM 2.4.11 on NEC-SX6(hurrikan) raw data: hpss:/dxul/ut/k/k204095/prism/experiments/C20_2

  • The D-Phase MicroPEPS is a LAF-Ensemble (lagged average forecast) that is based upon 5 different high resolution models: COSMOCH2 LMK AROME CMCGEMH ISACMOL2 The individual members can be found in the respective experiments 'dphase_*' in this data base. As time lagged forecasts the initialisation times t-3h and t-6h relative to the reference time t are incorporated. In a maximum the MicroPEPS might have 9 members (COSMOCH2: 3, LMK: 3, AROME: 1, CMCGEMH: 1, ISACMOL: 1). While COSMOCH2 and LMK generate new forecasts every 3 hours the other models run less frequently. In the 6 hour MicroPEPS time window AROME, CMCGEMH and ISACMOL provide one run each. During operation the ensemble size might change due to the availability of the forecasts. The MicroPEPS uses equal weights for averaging its members. The MicroPEPS generates probability forecasts by interpreting the overlapping areas of the single forecasts as members of a local ensemble. Due to the different domains of the deterministic models the size of the ensemble depends on location. Hence the quality of the forecasted probability distributions varies over the domain. There will be four runs a day at 0, 6, 12 and 18 UTC. Grid description: CDOM: xfirst: 6.0 yfirst: 47.0 xsize: 168.0 ysize: 151.0 xinc: 0.03 yinc: 0.02 xnpole: 0.0 ynpole: 0.0 DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 535.0 ysize: 351.0 xinc: 0.03 yinc: 0.02 xnpole: 0.0 ynpole: 0.0

  • ALADIN is the operational model at Meteo-France. The horizontal resolution is 9.5km, the time step : 415s with a Semi-lagrangian scheme. There are 46 vertical levels with 15 levels below 3000m. The domain of the integration is : (-11.84W, 33.14E) (25N,56.95N) Physical parameterization: - the micro-physics scheme use 4 prognostic variables: liquid and ice cloud water, rain and snow. - the convection scheme is based on Bougeault (1985) with a donwdraft parameterization. - the operational ECMWF radiation code which is called every 60 minutes. - the burbulence is based on Louis's function with an interactive mixing length. ALADIN is coupled with ARPEGE every 3 hours and has its own assimilation system based on 3DVAR. The post-processing in GRIB files is done on a regular LAT-LON Grid with a 0.1 deg resolution on the DPHASE domain. ALADIN-FRANCE daily performs 54h forecasts starting at 0TU, 6TU, 12TU, 18TU (only the 0UTC forecast until 30h is sent) Grid description: DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 161.0 ysize: 71.0 xinc: 0.1 yinc: 0.1 xnpole: 0.0 ynpole: 0.0

  • lami7 stands for 'Limited Area Model Italy' which is the Italian implementation of COSMO Model, run with a 7 km grid interval. COSMO model in lami7 suite is run operationally twice a day with a 7 km grid interval; it is initialised at 00 and 12 UTC with an own continuous assimilation cycle based on the nudging technique; the boundary conditions are provided by ECMWF IFS model; the integration domain ranges approximately from 0 deg E to 23 deg E and from 33 deg N to 52 deg N and the integration time range is 72 hours. The model is run at Cineca computing centre (http://www.cineca.it) on an IBM Power5 platform and in backup at ARPA-SIM (http://www.arpa.emr.it/sim/) on a Intel X86-64 Linux Cluster. Grid description: If given, the grid increments contained in the grib file have to be ignored since the precision for those parameters in GRIB1 format is not enough to represent the true value. DDOM: xfirst: -5.0 yfirst: -15.5 xsize: 186.0 ysize: 136.0 xinc: 0.0625 yinc: 0.0625 xnpole: 32.5 ynpole: -170.0