From 1 - 10 / 45
  • lami28 stands for 'Limited Area Model Italy' which is the Italian implementation of COSMO Model, run with a 2.8 km grid interval. COSMO model in lami28 suite is run operationally once a day with a 2.8 km grid interval; it is initialised at 00 UTC with the lami7 interpolated analysis; the boundary conditions as well are provided by lami7 model; the integration domain ranges approximately from 6°E to 19°E and from 36°N to 48°N and the integration time range is 48 hours. The model is run at Cineca computing centre (http://www.cineca.it) on an IBM Power5 platform. The PICS datasets was not provided due to computer time constraints. Please note: data are available ONLY from 09/10/2007 to 30/11/2007. Grid description: DDOM: xfirst: -3.5 yfirst: -15.425 xsize: 417.0 ysize: 272.0 xinc: 0.025 yinc: 0.025 xnpole: 32.5 ynpole: -170.0

  • RCM forcing data from three realisations of the CMIP5 experiment decadal2005. The decadal2005 experiment covers the years 2006-2035. The members start from different states in late 2005 (1 day apart) of an assimilated historical run (realisation 1).

  • RCM forcing data from three realisations of the CMIP5 experiment decadal2005. The decadal2005 experiment covers the years 2006-2035. The members start from different states in late 2005 (1 day apart) of an assimilated historical run (realisation 1).

  • RCM forcing data from the first realisation of the CMIP5 experiment rcp45. The experiment covers the period 2006-2100. Realisation is started end of 2005 from the respective realisation of the historical experiment.

  • The horizontal grid spacing is here 8 km. The domain size is 160 x 108 gridpoints covering the MAP D-PHASE domain. The vertical grid has 50 levels up to 20 km with a grid length varying from 60 m close to the surface to 600 m at high altitude. The model was integrated forward for 30 hours every day starting from 00 UTC ECMWF analysis and keeping outputs every 1 hour. More information is available at http://mesonh.aero.obs-mip.fr/mesonh/cops/ Grid description: DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 201.0 ysize: 88.0 xinc: 0.08 yinc: 0.08 xnpole: 0.0 ynpole: 0.0

  • The model is the very-high resolution operational implementation of COSMO model used by the Italian Met Service. The geographic area where the model is being run covers the entire italian pensinsula and major islands. The horizontal resolution is 2.8 km (0.025deg) with 50 vertical levels. The model is routinely run on the ECMWF computing resources once a day at 00Z with hourly output. The boundary conditions (BC) are interpolated from COSMO-ME forecast fields with 1 hour frequency update. Grid description: CDOM: xfirst: -2.6 yfirst: -10.65 xsize: 139.0 ysize: 110.0 xinc: 0.025 yinc: 0.025 xnpole: -170.0 ynpole: 32.5 DDOM: xfirst: -5.0 yfirst: -14.3 xsize: 449.0 ysize: 256.0 xinc: 0.025 yinc: 0.025 xnpole: -170.0 ynpole: 32.5

  • COSMO-ME is the high-resolution operational implementation of COSMO Model at the National Meteorological Service of Italy. The model domain covers most of continental Europe and the entire Mediterranean Basin. The horizontal resolution is 7km (0.0625deg) with 40 vertical levels. The model is routinely run on the ECMWF super-computer once a day at 00Z with hourly output. The initial conditions are interpolated from the Italian Met. Service 3DVAR-FGAT data assimilation system. The boundary conditions (BC) are provided by IFS global model. Grid description: DDOM: xfirst: -5.875 yfirst: -14.312 xsize: 194.0 ysize: 112.0 xinc: 0.0625 yinc: 0.0625 xnpole: -170.0 ynpole: 32.5

  • RCM forcing data from three realisations of the CMIP5 experiment rcp45. The experiment covers the period 2006-2100. The members are started end of 2005 from the respective members of the historical experiment.

  • RCM forcing data from the first realisation of the CMIP5 experiment rcp85. The experiment covers the period 2006-2100. Realisation is started end of 2005 from the respective realisation of the historical experiment.

  • RCM forcing data from three realisations of the CMIP5 experiment amip. The experiment covers the years 1979 to 2008 with a three year initialized spinup phase. Realisations differ by a small disturbance of the initial state only, and therefore by their restart files only.