From 1 - 3 / 3
  • This directory (experiment) contains volcanic SO2 data derived from limb viewing satellites for the lower stratosphere from 1998 to 2012. The usage of the data is described in Timmreck et al., (2018), datasets VolcDB1 and VolcDB1_3D. We provide 3D-plumes of observed volume mixing ratio perturbations in the lower stratosphere / upper troposphere typically derived from 10-day periods as nc-files and integrated values of injected SO2 mass with peak latitudes and altitudes as Fortran formatted ascii files (A11,5(1X,I3),I4,4(1X,I3),5(1X,I2),I3,4(1X,I2)) for at maximum 5 events at one time. Instead of A11 I2,I5,I5 can be used to read in the components of time. The data from Dec. 1997 to Jan. 2002 are based on L2-files of SAGE II (V7.0) provided by the NASA DAAC (Thomason et al., 2008). The data from Jul. 2002 to Mar. 2012 use the updated 5-day time series of MIPAS (Hoepfner et al., 2015), supplemented by SO2 derived from GOMOS extinctions (Bingen et al., 2017, with a corresponding table). SO2volc3D_pap_T42L90r.nc: 3D SO2 for 131 events in T42L90 resolution (ECHAM-grid in grid_T42L90.nc) surface to about 80km).. SO2volc3D_pap_T63L90r.nc: same in T63L90 resolution (ECHAM-grid in grid_T63L90.nc). Here a downscaling by 0.7 for low latitude eruptions is recommended because of less removal by overshooting convection (The data in the T42 file and in the table in Bingen et al 2017 were upscaled within the measurement uncertainty to overcome the model artifact in low resolution, this applies only for the ENVISAT part from Jul. 2002 on). Latitude from South to North, for use with ECHAM please reverse. The levels on the hybrid-grid in the grid files are defined as lev(x,y,z)=hyam(z)+hybm(z)*apsave(x,y), in Pa (apsave annual average of surface pressure or orography). Volcano_or_region_echam_merged_dd_mm_yyyy.txt: integrated SO2 mass injected (in kt), SAGE and ENVISAT period. The postscript-file is an example on the T42 grid, the *doc-file includes the volcano names for the data in the *.txt Files, see also http://wwww.volcano.si.edu (Smithsonian volcano database). AEROCOM-DIEHL_UMZ1_tropo11.nc: Fluxes from outgassing volcanoes in the troposphere (below 200hPa), taken from AEROCOM (Diehl, 2012; Caution, filled with odd climatology after 2009, monthly, beginning in Jan. 1950) AEROCOM-DIEHL_1297-0312_tropo11.nc: Subset beginning Dec. 1997.

  • Simulation with most recent version of MADE3 into the atmospheric chemistry general circulation model EMAC, including a detailed evaluation of a ten-year aerosol simulation with MADE3 as part of EMAC. Model details and setup specification are described in Kaiser et al. (Geosci. Model Dev., 2018). We compare simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of aerosol mass mixing ratio and number concentration vertical profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Furthermore, we describe and apply a new evaluation method, which allows a comparison of model output to size-resolved electron microscopy measurements of particle composition. Although there are indications that fine mode particle deposition may be underestimated by the model, we obtained satisfactory agreement with the observations. Remaining deviations are of similar size as those identified in other global aerosol model studies. Thus, MADE3 can be considered ready for application within EMAC. Due to its detailed representation of aerosol mixing state, it is especially useful for simulating wet and dry removal of aerosol particles, aerosol-induced formation of cloud droplets and ice crystals as well as aerosol-radiation interactions. Besides studies on these fundamental processes, we also plan to use MADE3 for a reassessment of the climate effects of anthropogenic aerosol perturbations. Please cite Kaiser et al. (Geosci. Model Dev., 2018) if using the data.

  • Simulation with most recent version of MADE3 into the atmospheric chemistry general circulation model EMAC, including a detailed evaluation of a ten-year aerosol simulation with MADE3 as part of EMAC. Model details and setup specification are described in Kaiser et al. (Geosci. Model Dev., 2018). We compare simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of aerosol mass mixing ratio and number concentration vertical profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Furthermore, we describe and apply a new evaluation method, which allows a comparison of model output to size-resolved electron microscopy measurements of particle composition. Although there are indications that fine mode particle deposition may be underestimated by the model, we obtained satisfactory agreement with the observations. Remaining deviations are of similar size as those identified in other global aerosol model studies. Thus, MADE3 can be considered ready for application within EMAC. Due to its detailed representation of aerosol mixing state, it is especially useful for simulating wet and dry removal of aerosol particles, aerosol-induced formation of cloud droplets and ice crystals as well as aerosol-radiation interactions. Besides studies on these fundamental processes, we also plan to use MADE3 for a reassessment of the climate effects of anthropogenic aerosol perturbations. Please cite Kaiser et al. (Geosci. Model Dev., 2018) if using the data.