Keyword

climate simulation

818 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
From 1 - 10 / 818
  • piControl is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 additional historical data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. piControl (3.1 Pre-Industrial Control) - Version 3: Pre-Industrial coupled atmosphere/ocean control run. Imposes non-evolving pre-industrial conditions. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc"

  • Simulated 2D residual velocity fields in the inner German Bight were subjected to Principal Component Analysis (PCA). Residual currents were obtained from coastDat2 barotropic 2D simulations with the hydrodynamic model TRIM-NP V2.1.22 in barotropic 2D mode on a Cartesian grid (1.6km spatial resolution) stored on an hourly basis for the years 1948 - 2012 (doi:10.1594/WDCC/coastDat-2_TRIM-NP-2d) and later extended until August 2015. The present analysis refers to the period Jan 1958 - Aug 2015. The spatial domain considered is the region to the east of 6 degrees east and to the south of 55.6 degrees north. All grid nodes with a bathymetry of less than 10m were excluded. Residual velocities were calculated in two different ways: 1.) as 25h means, 2.) as monthly means. Both types of residual current data are available from * RESIDUAL_CURRENTS_195801_201508 The directory contains sub-directories for years and months. Daily residual currents for the 13th of September 1974, for instance, are stored in * RESIDUAL_CURRENTS_195801_201508/YEAR_1974/MONTH_09/TRIM2D_1974_09_13_means.nc while monthly mean residual currents for September 1974 are stored in: * RESIDUAL_CURRENTS_195801_201508/YEAR_1974/TRIM2D_1974_09_means.nc All current fields provided were interpolated from the original Cartesian model grid to a more convenient regular geographical grid (116x76 nodes). Mean residual currents are stored in: * mean_residual_currents.nc This data set contains residual velocities both on original Cartesian grid nodes and interpolated to the geographical grid. An example plot is provided: * mean_residual_currents.png For PCA, two residual velocity components from each of 12133 Cartesian grid nodes were combined into one data vector (length 2x12133), referring to 21061 daily or 692 monthly time levels. Results of two independent PCAs for either daily or monthly mean fields are stored in: * PCA_daily_residual_currents.nc * PCA_monthly_residual_currents.nc Files contain three leading Principal Components (PCs) and corresponding Emipirical Orthogonal Functions (EOFs). Again EOFs were also interpolated to a regular geographical grid. PC time series are also stored in plain ASCII format: * PCs_daily.txt * PCs_monthly.txt For monthly fields the number N of variables (N=2x12133) is much larger than the number T of time levels (T=692). Therefore, to reduce computational demands, the roles of time and space were formally interchanged. Having conducted the PCA the EOFs were then transformed back to the original spatial coordinates (cf. Section 12.2.6 in von Storch and Zwiers (1999), Statistical Analysis in Climate Research, Cambridge University Press). A much larger number of time levels made even this approach prohibitive for the full set of daily data. Therefore, PCAs were performed for six sub-periods (1958-1965, 1966-1975, 1976-1985, 1986-1995, 1996-2005, 2006-2015(Aug)) independently. EOFs obtained from these six sub-periods were then averaged to obtain EOFs representative for the whole period. Corresponding PCs were calculated by projecting daily fields onto these average EOFs. IMPORTANT: In contrast with PCA of monthly data, the PCA of daily data INVOLVES SOME APPROXIMATIONS! EOFs on the original nodes were normalized to have unit lengths. The following figures, * daily_EOF1.png * daily_EOF2.png * daily_EOF3.png show the first three EOFs obtained from daily data, assuming that corresponding PCs have the value of one standard deviation. The following two plots, * monthly_EOF1.png * monthly_EOF2.png show the leading EOFs for monthly mean data. EOF3 is omitted as it represents just a very small percentage of overall variance (1.7%).

  • The data represent 6 hourly values of a 20th century simulation (including year 2000) with observed anthropogenic forcings(CO2, CH4, N2O, CFCs, O3 and sulfate) initialized in year 2190 of the preindustrial control run. This is followed by a commitment experiment for the 21th century (years 2001-2100) with all concentrations fixed at their levels of the year 2000. Data Sets with monthly mean values are also available. Technical data to this experiment: The experiment is using ECHAM5.2.02a coupeld to MPI-OM Vers. 1.0 GR1.5L40 The output from the model run: hurrikan.dkrz.de:/ut/k/k204076/EXP000/run009 Please note: experiment_name/acronym was renamed (27-JUN-2005, 20C_0 changed to 20C_1)

  • "esmX" are an experiment family of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ) including esmHistorical, esmrcp85, esmFdbk1, esmFixClim1 and esmFixClim2. CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 esm data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. esmX: Variation of CMIP5 experiment with alternate forcing (emissions-forced historical and rcp85) or alternate feedback (CO2 increase feedback on radiation code for esmFdbk1, esmFixClim1/2). Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc" (e.g.: esmrcp85/Amon/tas/bcc-csm1-1/r1i1p1/tas_Amon_bcc-csm1-1_esmrcp85_r1i1p1_200601-209912.nc )

  • rcp26 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 additional historical data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. rcp26 (4.3 RCP2.6) - Version 2: Future projection (2006-2100) forced by RCP2.6. RCP2.6 is a representative concentration pathway which approximately results in a radiative forcing of 2.6 W m-2 at year 2100, relative to pre-industrial conditions. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc"

  • amip is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 additional historical data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. amip (3.3 AMIP) - Version 2: AMIP (1979 - at least 2008). Impose SSTs and sea ice from observations but with other conditions as in experiment 3.2 historical. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc"

  • The experiment CLM_C20_3_D2 contains European regional climate simulations of the years 1960-2000 on a rotated grid (CLM non hydrostatic, 0.165 degree hor. resolution, see http://www.clm-community.eu ). The simulations of the 20th century (1960-2000) have been forced by the third (_3_) run of the global 20th century climate (EH5-T63L31_OM-GR1.5L40_20C_3_6H) with observed anthropogenic forcing. In data stream 2 (_D2) the output variables of CLM are stored as time series on a rotated grid. The model region starts at -20.8725/-23.7275 (lat/lon in rotated coordinates; centre of lower left grid box) with an increment of 0.165 deg. The position of the North Pole in the rotated grid is: 39.25/-162.0 (lat/lon). The number of grid points is 255/241 (lat/lon). The sponge zone (numerically unreliable boundary grid points) of the original model output has been cut off. The regional model variables include two-dimensional near surface fields, as well as soil and atmospheric fields on different layers. The soil fields are simulated on 10 different levels with a maximum depth of 15 meters. The atmospheric fields are given on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa). The time interval of the output fields ranges from 1 to 3 hours and includes daily output fields, depending on the respective variables. Please contact sga"at"dkrz.de for data request details. See http://sga.wdc-climate.de for more details on CLM simulations in the context of the BMBF funding priority "klimazwei", some useful information on handling climate model data and the data access regulations. The output format is netCDF Experiment with CLM 2.4.11 on NEC-SX6 (Stuttgart) raw data: /ut/6/k204095/imdi/experiments/C20_3/outdata/clm

  • rcp45 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 additional historical data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. rcp45 (4.1 RCP4.5) - Version 2: Future projection (2006-2100) forced by RCP4.5. RCP4.5 is a representative concentration pathway which approximately results in a radiative forcing of 4.5 W m-2 at year 2100, relative to pre-industrial conditions. RCPs are time-dependent, consistent projections of emissions and concentrations of radiatively active gases and particles. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc"

  • rcp60 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 additional historical data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. rcp60 (4.4 RCP6) - Version 2: Future projection (2006-2100) forced by RCP6. RCP6 is a representative concentration pathway which approximately results in a radiative forcing of 6 W m-2 at year 2100, relative to pre-industrial conditions. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc"

  • rcp85 is an experiment of the CMIP5 - Coupled Model Intercomparison Project Phase 5 ( https://pcmdi.llnl.gov/mips/cmip5 ). CMIP5 is meant to provide a framework for coordinated climate change experiments for the next five years and thus includes simulations for assessment in the IPCC AR5. This subset of the CMIP5 additional historical data were collected by ETH Zurich until 15th March 2013 in support of IPCC AR5 Working Group 1 ( http://wiki.c2sm.ethz.ch/COSMO/CMIP5 ). These data are part of the IPCC-DDC AR5. rcp85 (4.2 RCP8.5) - Version 2: Future projection (2006-2100) forced by RCP8.5. RCP8.5 is a representative concentration pathway which approximately results in a radiative forcing of 8.5 W m-2 at year 2100, relative to pre-industrial conditions. RCPs are time-dependent, consistent projections of emissions and concentrations of radiatively active gases and particles. Experiment design: https://pcmdi.llnl.gov/mips/cmip5/experiment_design.html List of output variables: https://pcmdi.llnl.gov/mips/cmip5/datadescription.html Output: time series per variable in model grid spatial resolution in netCDF format Earth System model and the simulation information: CIM repository Data are structured and entry names are set according to the ETH Zurich Archive layout: "experiment/MIP table/variable/model/ensemble member/CMOR filename.nc"