From 1 - 10 / 15
  • The energy balance stations run by FZK/IMK-TRO measured high-frequency (20 Hz or 32 Hz) eddy-covariance raw data with either a Solent R1012 (Gill Instruments Ltd.) sonic anemometer or a Young 81000 (R. M. Young Company) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above different target land use types. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in the additional pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-files.

  • Surface layer scintillometer data derived from a Optical Energy Balance Measurement System OEBMS1 with a Scintillometer SLS20 system by Scintec AG at station UV1EG (Deckenpfronn). The system operated at a measurement height of 1.75 m and with a path length of 117 m over the target land use type meadow.

  • The energy balance stations run by University of Bayreuth measured either high-frequency (20 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer or turbulent fluxes of momentum, sensible and latent heat with a USA-1 (METEK GmbH, Germany) sonic anemometer and two psychrometers (Frankenberger) above different the target land use types. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in the additional pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the supplementary pdf-files corresponding to the individual station.

  • The energy balance station run by University of Bonn measured high-frequency (10 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type meadow. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-file.

  • The Sodar/RASS device installed at Fussbach consisted of a DSDPA.90/64-Sodar and a DSDR3x7-1290MHz-RASS extension by METEK GmbH. It operated with an averaging period of 10 min. The minimum measurement height was 40 m and the maximum measurement height 700 m with a step width of 20 m in between.

  • The 9 m profile mast run by University of Bayreuth continuously measured profiles of the wind speed, the air temperature and the water vapor pressure above a corn field with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. Six cup anemometers and five psychrometers have been mounted in different heights. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The following instruments have been installed for the parameters given below: - wind speed: F460 cup anemometer (Climatronics Corp.) - temperature and water vapor pressure: electrically aspirated psychrometer (Frankenberger) The water vapor pressure has been calculated from the measured dry and moist thermometer temperatures of the psychrometer according to Sprung's psychrometer formula.

  • The two energy balance station run by Meteo-France/CNRM measured high-frequency (20 Hz) eddy-covariance raw data with a Solent-HS (Gill Instruments Ltd.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type corn. The measuring set-up was continuously running during July 2007 in order to provide turbulent flux data of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the additional info pdf-file corresponding to the individual station.

  • Several meteorological parameteres were measured at different stations run by FZK/IMK-TRO. Depending on the individual site i.e. wind direction, wind speed, global radiation, reflected irradiance, atmospheric longwave radiation, terrestric longwave radiation, surface temperature, precipitation, air pressure, soil heat flux, relative humidity. The respective set of parameters is described in the meta data of each station.

  • Reflectivity and radial velocity of Karlsruhe C-Band Doppler Radar located at Forschungszentrum Karlsruhe. Volume data in polar coordinates are delivered. Two scans have been performed: 1. 14 Elevation volume scan of reflectivity and radial velocity starting at 0.4 deg elevation up to 30 deg elevation, 120 km range, 500 m resolution, dual PRF (pulse repetition frequency; 1153 Hz/864 Hz): reflectivity and radial velocity. 2. 14 Elevation volume scan as 1, but only single PRF: reflectivity. The data is provided in two different data sets: reflectivity (ca. every 5 min; data from both scan modi) and radial_velocity (every 10 min; data from 1st scan mode).

  • The energy balance stations run by University of Bayreuth continuously measured radiation and soil parameters over different land types with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The instrumentation was different on each location. The following was measured depending on the station: - soil heat flux - soil temperature - volumetric soil water content - longwave radiation components - shortwave radiation components - tipping bucket rain gauge measurements The ground heat flux including the heat storage in the upper soil layer was determined from the measured soil heat flux, soil temperatures and volumetric soil water contents according to the 'simple measurement' (SM) method according to Liebethal and Foken (2007).