observational data

53 record(s)
Type of resources
Contact for the resource
Provided by
From 1 - 10 / 53
  • The research aircraft DO-128, call sign D-IBUF, of the IFF (TU Braunschweig) measures numerous meteorological and chemical variables to get a better understanding of the atmospheric processes which cause the development of precipitation. The aircraft starts from the Baden Airpark and flys among different flight pattern which are described in the flight protocols. The meteorological variables are static pressure and dynamic pressure at the nose boom, surface temperature, humidity mixing ratio by a lyman-alpha sensor, dewpoint temperature by a dewpoint-mirror, relative humidity by an aerodata-humicap, air temperature by a PT-100 sensor, vertical and horizontal wind components by a five-hole probe and GPS, turbulence (100 Hz), shortwave (pyranometer) and longwave (pyrgeometer) radiance in upper und lower half space. The chemical variables are mole fractions of ozone, carbon dioxide, carbon monoxide, nitrogen dioxide, nitrogen monoxide and nitric oxides (NOx). There are also a few variables for the position and the velocity of the aircraft stored in the data file. Additionally to the measurements by the aircraft, up to 30 drop-sondes can be dropped out of the aircraft. By using these sondes, vertical profiles of temperature, pressure, humidity and wind can be detected (see also the meta data describing the drop-sonde data). Special events are also marked in the data files by the event counter (e.g. dropping times of the drop-sondes, marks concerning the flight patterns etc.). The specific action or flight manoeuvre indicated by the event_number can be identified in the flight protocol.

  • The WOCE/ARGO Global Hydrographic Climatology (WAGHC) is concieved as the update of the previous WOCE Global Hydrographic Climatology (WGHC) (Gouretski and Koltermann, 2004). The following improvements have been made compared to the WGHC: 2) finer spatial resolution (0.25 degrees Lat/Lon compared to 0.5 degrees for WGHC); 3) finer vertical resolution (65 compared to 45 WGHC standard levels); 4) monthly temporal resolution compared to the all-data-mean WGHC parameters; 5) narrower overall time period; 6) calculation of the mean year corresponding to the optimally interpolated temperature and salinity values; 7) depth of the upper mixed layer. Similar to the WGHC the optimal spatial interpolation is performed on the local isopycnal surfaces. This approach diminishes the production of the artificial water masses. In addition to the isopycnally interpolated parameters parameter values interpolated on the isobaric levels are also provided. The monthly gridded vertical profiles extend to the depth of 1898 m, below only annual mean parameter values are available. Additionally, there is a dataset and a map available providing indexes for selected regions of the world ocean. Finally, the comparison with the last update of the NOAA World Ocean Atlas (Locarnini et al, 2013) was done.

  • The 9 m profile mast run by University of Bayreuth continuously measured profiles of the wind speed, the air temperature and the water vapor pressure above a corn field with a sampling frequency of 1 Hz averaged to 1 min values within the data logger. Six cup anemometers and five psychrometers have been mounted in different heights. After a check for plausibility the 1 min values have been averaged to 30 min intervals, which are provided in this data set. The following instruments have been installed for the parameters given below: - wind speed: F460 cup anemometer (Climatronics Corp.) - temperature and water vapor pressure: electrically aspirated psychrometer (Frankenberger) The water vapor pressure has been calculated from the measured dry and moist thermometer temperatures of the psychrometer according to Sprung's psychrometer formula.

  • The Sodar/RASS device installed at Fussbach consisted of a DSDPA.90/64-Sodar and a DSDR3x7-1290MHz-RASS extension by METEK GmbH. It operated with an averaging period of 10 min. The minimum measurement height was 40 m and the maximum measurement height 700 m with a step width of 20 m in between.

  • Surface layer scintillometer data derived from a Optical Energy Balance Measurement System OEBMS1 with a Scintillometer SLS20 system by Scintec AG at station UV1EG (Deckenpfronn). The system operated at a measurement height of 1.75 m and with a path length of 117 m over the target land use type meadow.

  • Dropsondes (mobile radiosondes) were launched by 5 mobile radiosonde teams. The launching sites were different from IOP to IOP. The positions are identical with the positions of the meteorological towers (imkmt1 to imkmt4). There have been no more than 4 teams operational on each IOP. The dropsondes are radiosonde-like systems. The maximum height is 12050 m above MSL. At this height, the sondes are separated from the balloon and then glide to the ground. Drop points are up to 70 kilometres apart from launching sites. For detailed information about the sites see supplement file and map.

  • KONTROL 1984 is part of research activities focused on organized convection phenomena as they are often manifested in organized cloud patterns like the well-known boundary layer cloud streets or open and closed cellular cloud structures. The experimental part of the investigations began with the experiment KonTur (Konvektion and Turbulenz) in September and October 1981. It continued with the experiments KONTROL in August 1984 and KONTROL in October 1985. All experiments took place over the German Bight in the southeastern part of the North Sea. The experimental concept based on the use of two fixed stations performing continuous aerological and surface observations and two aircraft conducting detailed observations during special periods. The stations were the research vessel Valdivia and the research platform NORDSEE (54°42'N, 7°10'E). The aircraft were a FALCON-20 of DFVLR and a DO-28 Skyservant of the TU Braunschweig.

  • The energy balance station run by University of Bonn measured high-frequency (10 Hz) eddy-covariance raw data with a CSAT3 (Campbell Scientific, Inc.) sonic anemometer and a LI-7500 (LI-COR Biosciences) hygrometer above the target land use type meadow. The measuring set-up was continuously running during the entire COPS measurement period in order to provide a complete time series of the turbulent fluxes of momentum, sensible and latent heat as well as carbon dioxide. Post-processing was performed using the software package TK2 (developed by the Department of Micrometeorology, University of Bayreuth) which produces quality assured turbulent flux data with an averaging interval of 30 min. The documentation and instruction manual of TK2 (see entry cops_nebt_ubt_info_1) and additional references about the applied flux corrections and post-field data quality control (see entry cops_nebt_ubt_info_2) as well as a document about the general handling of the flux data can be found in supplementary pdf-files within the energy balance and turbulence network (NEBT) experiment of the data base. The turbulent flux data in this data set are flagged according to their quality and checked for an impact of possible internal boundary layers. Additionally, the flux contribution from the target land use type intended to be observed to the total flux measured was calculated applying footprint modeling. Information and references about the internal boundary layer evaluation procedure and the footprint analysis are also given in additional info pdf-files. Pictures of the footprint climatology of the station as related to the land use and to the spatial distribution of the quality flags are included in the corresponding additional info pdf-file.

  • The field experiments ALKOR 2000 (consisting of three cruises: ALKOR 4/2000, 6/2000, 10/2000) and ALKOR 2001 (4/2001, 6/2001, 10/2001) took place in the central Baltic Sea. The six cruises of the German Research Vessel Alkor with duration of about seven days each led to a point of the Baltic Sea which is most remote from the adjacent lands and additionally a grid point of regional climate model REMO. The ALKOR experiments as well as BASIS 1998 and BASIS 2001 are part of the research compound BALTIMOS (BALTic sea Integrated MOdel System). BALTIMOS in turn is part of the Baltic Sea Experiment (BALTEX). The overall objective of all eight field experiments (ALKOR and BASIS) was to collect a comprehensive data set suited to validate the coupled model system BALTIMOS for the Baltic Sea region. The observations mainly focus on: - the atmospheric boundary layer structure and processes and the air-sea-ice interaction over areas with inhomogeneous sea ice cover - the atmospheric boundary layer structure over open water under different synoptic conditions such as cold-air advection, warm-air advection or frontal passages. In addition to the published datasets several other measurements were performed during the experiment. Corresonding datasets will be published in the near future and are available on request. Details about all used platforms and sensors and all performed measurements are listed in the fieldreport. The following datasets are available on request: ground data at RV Alkor

  • The period of permanent measurement was : 1st July - 31 July 2007 The measured parameters are : Air pressure, air temperature, relative humidity, wind speed and direction, position. The operation was effective during IOP, up to 6 soundings a day. Near the village of Meistratzheim, 20 km south_westward of Strasbourg. The platform on the site of Niederrott is installed just between 2 types of vegetation : Maize on the west and short grass on the east part.