From 1 - 10 / 33
  • The data are from multi-decadal hindcast simulation with the wave model WAM 4.5 covering the Southern North Sea (51-56.5 N and -3W-10.5E) using a grid size of about 5,5x5.5 km (0.05 degrees latitude x 0.10 degrees longitude). The hindcast covers the period 1948-2007. Integrated parameter derived from 2D spectra are available every hour; the wave spectra themselves are available with a 3-hour time step. Atmospheric forcing was obtained from an atmospheric hindcast with SN-REMO driven by the NCEP/NCAR Reanalysis 1 data set. Lateral boundary conditions were obtained from corresponding coarse grid hindcast covering most of the Northeast Atlantic driven by the same atmospheric forcing.

  • The data are from multi-decadal hindcast simulation with the wave model WAM 4.5 covering the entire Baltic Sea using a grid size of about 5.5x5.5 km (0.05 degrees latitude x 0.10 degrees longitude). The hindcast covers the period 1958-2002. Integrated parameter derived from 2D spectra are available every hour; the wave spectra are available with a 3-hour time step. Atmospheric forcing was obtained from an atmospheric hindcast with SN-REMO (http://dx.doi.org/10.1594/WDCC/coastDat-1_SN-REMO) driven by the NCEP/NCAR Reanalysis 1 data set (Kalnay et al.,1996). Lateral boundary conditions were obtained from corresponding hindcast for the southern North Sea driven by the same atmospheric forcing (http://dx.doi.org/10.1594/WDCC/coastDat-1_Waves).

  • This is a hydrodynamic hindcast for the North Sea and the Northeast Atlantic over the period 1948-2015. The simulation has been performed with the hydrodynamic model TRIM-NP V2.1.22 in barotropic 2D mode. Water level and current component fields are stored hourly. The model is set up on an equidistant Cartesian grid cascade with the center near Helgoland (7.88 E, 54.18 N). The coarsest grid with 12.8 km resolution covers the area from 20 W to 30 E and from 42 N to 65 N. Further 3 nested grids better resolve the North Sea (with 6.4km), southern North Sea (with 3.2km) and the German Bight (with 1.6km). Model data from grid 1 and grid 4 are available in this data bank. Please contact the authors for data from grid 2 and grid 3. Time supplement procedure: data over period 2013-2015 appended 04-05-2016

  • High RESolution Atmospheric Forcing Fields (HiResAFF) consist of key meteorological variables on daily scale which are typically used to drive ocean or ecosystem models. The fields are reconstructed through non-linear statistical upscaling using the analog-method (Schenk and Zorita, 2012). The method resamples atmospheric fields from a regional climate model (RCAO/RCA3) in time based on the best pattern similarity in the predictor space of homogenous historical station data since 1850. The dataset provides physically consistent homogeneous atmospheric fields suitable to derive long-term simulations and statistical analysis since 1850 over the North Sea and Baltic Sea region of Europe. The analog-method and reconstruction skill is described in Schenk and Zorita (2012) and the extended dataset to 1850 in Schenk (2015). The research leading to these results has received funding from the European Union Seventh Framework Programme (FP/2007-2013) under grant agreement no. 217246 made with the joint Baltic Sea research and development programme BONUS, and the German Federal Ministry of Education and Research (03F0492A).

  • The experiment CLM_B1_1_D3 contains European regional climate simulations of the years 2001-2100 on a regular geographical grid. The data are generated during post processing of the corresponding data stream 2 experiment (CLM_B1_1_D2) of regional climate model runs (CLM non hydrostatic, see http://www.clm-community.eu ). It is forced by the first (_1_) run of the global IPCC scenario B1 (EH5-T63L31_OM-GR1.5L40_B1_1_6H), which describes a possible future world with global population peaking in mid-century and rapid change in economic structures towards a service and information economy. An introduction of clean and resource efficient technologies was assumed. In data stream 3 (_D3) the output variables of CLM data stream 2 and some additionally derived parameters are stored as time series on a regular geographical grid (0.2 degree res.). The transformation has been done via CDO routines. Please note, that none of the variables has been corrected for topographical differences between the two grids. The model domain of data stream 3 covers the European region starting at 34.6/-10.6 (lat/lon, centre of lower left grid box). The number of grid points is 177/238 (lat/lon). For some model variables and additionally derived parameters some statistics on daily, monthly or yearly basis are available. Please contact sga"at"dkrz.de for data request details. See http://sga.wdc-climate.de for more details on CLM simulations in the context of the BMBF funding priority "klimazwei", some useful information on handling climate model data and the data access regulations. The output format is netCDF. Experiment with CLM 2.4.11 on NEC-SX6(hurrikan). raw data: hpss:/dxul/ut/k/k204095/prism/experiments/B1_1 data years < 2060: /dxul/ut/k/k204095/prism/experiments/B1_1/outdata/clm/yearnnnn data years > 2059: /dxul/prj/ir0264/arch/CLM/prism/experiments/B1_1/outdata/clm/yearnnnn

  • The data are from a multi-decadal tide-surge hindcast 1958-2004 for the North Sea using the TELEMAC2D model. Data (sea surface elevation, depth averaged currents) are available every hour on an unstructured grid with about 27,000 nodes and varying resolution ranging from about 5 km in the open North Sea to about 75m near the coast and within estuarys. The model was driven by hourly atmospheric data from a multi-decadal atmospheric hindcast ( http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=coastDat-1_SN-REMO ) and, at the open boundries, by the most relevant tidal constituents. In addition, hourly sea level data from Aberdeen were assimilated at the Northern boundary to account for external surges.

  • The experiment CLM_C20_2_D2 contains European regional climate simulations of the years 1960-2000 on a rotated grid (CLM non hydrostatic, 0.165 degree hor. resolution, see http://www.clm-community.eu ). The simulations of the 20th century (1960-2000) have been forced by the second (_2_) run of the global 20th century climate (EH5-T63L31_OM-GR1.5L40_20C_2_6H) with observed anthropogenic forcing. In data stream 2 (_D2) the output variables of CLM are stored as time series on a rotated grid. The model region starts at -20.8725/-23.7275 (lat/lon in rotated coordinates; centre of lower left grid box) with an increment of 0.165 degree. The position of the North Pole in the rotated grid is: 39.25/-162.0 (lat/lon). The number of grid points is 255/241 (lat/lon). The sponge zone (numerically unreliable boundary grid points) of the original model output has been cut off. The regional model variables include two-dimensional near surface fields, as well as soil and atmospheric fields on different layers. The soil fields are simulated on 10 different levels with a maximum depth of 15 meters. The atmospheric fields are given on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa). The time interval of the output fields ranges from 1 to 3 hours and includes daily output fields, depending on the respective variables. Please contact sga"at"dkrz.de for data request details. See http://sga.wdc-climate.de for more details on CLM simulations in the context of the BMBF funding priority "klimazwei", some useful information on handling climate model data and the data access regulations. The output format is netCDF Experiment with CLM 2.4.11 on NEC-SX6(hurrikan) raw data: hpss:/dxul/ut/k/k204095/prism/experiments/C20_2

  • COSMO-CLM simulation for Bohai, Yellow and East China Sea: System Analysis and Modelling Group at the Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research (referred to hereinafter as data producer) has computed the regional climate simulation. By making these data available, the data producer wishes to stimulate and support climate change and impact research projects. The data producer is aiming to make the results produced on the basis of these data available on its website and in publications as part of an international overview of regional climate change research. All interested users will have access to the simulation data being calculated with high resolution both in space and time. The data were computed at the German Climate Computing Centre (DKRZ) in Hamburg using the regional climate model COSMO-CLM. The simulations were carried out with support by the China Scholarship Council, the Helmholtz Climate Initiative REKLIM and the CLM community.

  • This is a hydrodynamic hindcast for the Baltic Sea over the period 1958-2011. The simulation has been performed with the hydrodynamic model TRIM-NP V2.1 in barotropic 2D mode. Water level and current component fields are stored hourly. The model is set up on an equidistant Cartesian grid cascade with the center near Helgoland (7.88 E, 54.18 N) for the coarsest grid (12.8km resolution) (http://dx.doi.org/doi:10.1594/WDCC/coastDat-2_TRIM-NP-2d). Further model results from three nested grids (6.4km,3.2km, 1.6km resolution) for the Baltic Sea are hourly available for the period 1958-2011.

  • This is an atmospheric hourly hindcast for Western Europe and the North Atlantic using REMO with spectral nudging from 1948-2007. The model uses a rotated grid with 81 x 91 grid points and a grid point distance of 0.5 degrees, the North pole is located at 170 W, 32.5 N. In rotated coordinates the model area extends from 19.5 W to 20.5 E, 25 S to 20 N, in geographical coordinates this corresponds to about 10.4 W to 70.7 E, 29.6 N to 67.8 N.